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Abstract

This paper proposes a new subspace state-space sys-
tem identification method which consists of two stages.
At the first stage, the noise attenuation is achieved
based on the uncorrelation between input signal and
noises, where a large amount of data can be handled
with the prescribed size matrices. At the second stage,
the available prior knowledge on the plant is fully used
for the subspace based identification. The combina-
tion of these two methods enable us to obtain accurate
state-space models. An illustrative numerical exam-
ple is given to show the effectiveness of the proposed
method.

1 Introduction

Recently, a lot of attention has been given to
subspace state-space system identification (4SID)
method[1]~[7]. In fact, this method can be easily ap-
plied to MIMO systems and closed loop identification.
However, this method is not so robust against noises
and the accurate model is sometimes hard to obtain.
One way to circumvent this difficulty is to use large
number of experimental data. However it requires more
memmories and computation power. Therefore, it is nec-
essary to achieve noise reduction with limited computa-
tion power. The other major difficulty of 4SID method
is that it is not possible to take account of the prior
knowledge of the plant such as partial information on
pole locations. For example, many mechanical systems
have a pole at origin (i.e. integral type). If we can take
advantage of the prior knowledge, more accurate model
would be obtained.

In this paper, we propose a new subspace state-space
system identification method taking account of both
noise attenuation and use of the prior knowledge. At
the first stage, we attenuate the noises in the input-
output data based on the uncorrelation between input
signal and noise, where large amount of data can be
handled with the prescribed size matrices. At the sec-
ond stage, as a prior knowledge on the plant, the pole
location is assumed to be known partly. We show how
to make use of the prior knowledge for subspace identi-
fication. The combination of these two methods enable
us to obtain accurate state-space models. In order to
illustrate the effectiveness of the proposed method, we
0-7803-3590-2/96 $5.00 © 1996 IEEE

give numerical examples.

In this paper, []Jr means the generalized inverse ma-
trix, || - || means the Frobenius norm. And A¢i:j.k: 0
represents the submatrix of A consisting of block rows
i — j and block columns k — ¢{. A/B means the orthog-
onal projection of A to the column space of B, which
is given as

A/B = ABT(BBT)!B

2 System description

Consider the following linear, discrete-time SIMO
system.
Az + Bup + wi
Czi + Duj. + vy,

Thk+1

- (1)
Yk

Il

Here y € R is the output signal, « € R is the input
signa.l, z € R" is the state vector, w € R" and v €
R" are unknown zero mean process noise and additive
noise, respectively. And we assume that

e w, v and the input u uncorrelate to each other,

namely,
1y T
m i =0 @)
I r '
pmyTaml=0 @

are satisfied for any 1.

e This system is minimal and we know the pole
location of the plant partly, by which the system
in (1) can be written as

k k 0
Ik+1 - An 0 Ik [Bl] o [ ]
[5k+1] [A21A22 Ek + B, Ut w2 k] (g

y =[C1C] 2 + Dur + v

where wy € R"7? is a noise and A4,; and B,
are known matrices, and zt € RP? is available.
Without loss of generality, we assume that the
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pair (A3, By) has the following canonical form.

ay 1 0 0

Ay = : T sy Bi=| = | (8)
ap—, 0 “ e 1
ap 0 - 0 1

Our goal is to identify the coefficient matrices
(A21,A22. B2, C1, (2, D) of (4) based on the subspace
based system identification method.

3 4SID method
In this section we briefly review 4SID method(5).

3.1 Input output equation

The existing 4SID method obtains the coefficient
matrices (A, B, C, D) directly from input-output data.
From (1), sequences u, y, r satisfy the following general
structured input-output equation.

Yijn =TiX{ + HiU; jn + LiX;+Vijn  (6)

where,
Y;i o Yi4N—1
Yijn = : : (7)
yj+i 1 Yi+i+N-1
X;"i = [ x J+N -1 ] (8)
Xj=[a] o xhno ] 9
C D 0
;= , Hi:= (10)
CAi-t CA-2B... D

U;j,~ and Vi.j,~ are defined in the same way as Yiin
by u and v, respectively. The state vector z is split in
the deterministic part 2% and stochastic part z° as

z¢,, = Az{ + Buy, Tiy = Az} + wy (11)

T'; is the extended observablity matrix, and H; is a
Toeplitz matrix.

3.2 Identification

4SID method is based on (6). By the orthogonal
projection of Y; ; v to the column space of U; j» and
U;b-‘ N Yi j,n is decomposed as follows

Yijn = Yi;n /UGN + Yiin/Uijn (12)
},i.j.N/Ui N_FXd/ JN+S,JN/U31N (13)
Yiin [Uijn = DX Uijn + HUijn + SijnJUijn
(14)
S,“j'N = F,‘X: + V,'JJV (15)
When noises are small,
T X2 /U5 w | > |Sisn /US N (16)
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is satisfied. Because T'; is the extended observability
matrix, rankI'; = n and

rank}",-'j,N/U,-J"J"N =n (17)

is satisfied. By using these relatious, we can identify
['; and C, A from (13), and by using I';, B and D are
obtained based on (14). The algorithm of 4SID method
is shown in Appendix.

However, when noises are not small, as (16) is not
satisfied, I'; is not obtained accurately. In this case, we
need to attenuate the noise term I'; X7 + 1V ; v from
(6) in advance. Furthermore, the existing 4SID method
is not possible to take account of the prior knowledge
of the plant. In general case, we often have a partial
information on pole location of the plant. For example,
many mechanical systems have a pole at origin. In
the following, we propose a new subspace state-space
system identification method taking account of hoth
the noise attenuation and use of the prior knowledge.

4 Proposed method

Our method consists of two stages. The first stage is
the noise attenuation. The second stage is using prior
knowledge.

4.1 Stage 1 : Noise attenuation

In this section, we show how to attenuate the noise
term in (6) by using the uncorrelation of the input sig-
nal and noises, where large amount of data can be han-
dled with the prescribed size matrices.

4.1.1 Design Concept: Rewrite (6) as
Yiaet1.v = DX + HiUinii N + Sioin  (18)
Multiply (18) b

U a+i—1,1,5 from the right, then we have

where a is user-defined index.

1

N|a+1NU+|llN_r ‘XO-HU-HllN

+H"'—U':.Or+1.NUa+i—l,l.N + ‘Si.o+1 NULi_ 1L1,N
N N

(19)
Because u uncorrelates with both v and w,
) 1
l}‘_{noo N it nUS. +i-1Nf| =0 , (20)

is satisfied. And because u correlates with ¢ and y,

) 1

Nll_{noo IN-X:+IU¢~+' 1,1,N #0 (21)
. 1., T

}Jgnw 'ﬁ}i.a+l.NUn+i—l,l,N #0 (22)

hold. It is obvious

lim
N —no

#0 (23)

T
ﬁUi.aH.NUo“-l.l,N
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From these observation, when N — oo, (19) is written
as

N " N
Y =IX+HU, Y:= N}.M,,NUL,-_,,LN (24)

o 1 - 1
X:= _‘Xg+lUZ+i-l,l,N! U:= NUi.aH.NUL;_l,,,N

N
(25)

We can regard (24) as the input-output equation
achieving the noise attenuation. This stage does not
need the assumption that this system is SIMO system.
i.e. this stage can be adopted to MIMO systems.

4.1.2 Discussions:
Reduction of the matrix size: In the stage 1,

. 1 . .
by multipling (18) by NUZ;,-_,,I'N, noise attenuation

is achieved because of (20), (22) and (23). At the same
time, large amount of data can be handled with the pre-
scribed size matrix. In the conventional 4SID method,
the input-output equation (6) is i x N matrix. Because
we must compute QR decomposition such as (A.1) us-
ing this size of matrix, if N — oo then quite a large
amount of computation must be required. However, in
the proposed method, input output equation is given
by (24) whose matrix size is £i x (@ +1) (a € N). Be-
cause « is a design parameter and it does not depend
on N, our method requires much less computation than
the existing 4SID method.

Impulse response of the system: It is useful
to know the impulse response of the system. In our
method, by using the zero mean stationary white sig-
nal as the input, the impulse response of the system is
obtained easily.

Consider when u is zero mean white signal with co-
variance 02 and z; = 0. Because the output y,4; is
written as

o
Yat1 = Dugyq + Z CA* 'Bug_ri1 + Vopr
k=1

a
+ Z CAk—lwa_k+1 (26)
k=1
the first { column and first row of .I%I-Y'."H'I’N vl 1N
is written as
Yo+ N ] [ Uup up un ]T
=CA° 'Bo? (N - x) (27)

where we use the uncorrelation of u; and v, wi, u,
(¢ # k). By extending this observation to all columns
and rows,

1
N [ Yot+1 Yat2

.1
lim 'ﬁY-’.aH.NUzﬁ—l,l.N

N—oo
CA°-'B ... D 0
CA°B CB D
2| ¢4 , .
CA°+=2B...CA"?B CA-B ... D

(28)

is satisfied. This matrix becomes a Toeplitz matrix
consisting of the impulse response of the system.

4.2 Stage 2 : Subspace based identification us-
ing prior knowledge

We often have a partial information on pole location
of the plant. In this section, we show how to use this
information.

4.2.1 Basic idea: The input-output equation of
the system in (4) is given by

Yi;jn =18+ H}XJ'-‘ +HUi;n+Sijn  (29)

where,
Zi=[ 4 Eien-1 ) (30)
X}‘ = [ x;’ 1:;'-'+N_1 ] (31)
B =[S o ST (a2)
_J G (k=1 33
B ‘{ Sk1dn + Codly Ay (k22) ()
Cy
L= : (34)
CaAR"

and H? is a block Toeplitz matrix with the first column

D
Ha:ie) = =B + b (35)
Si1B1 + Co Al By
Moreover, the following equations are satisfied.
Hle+1:ie) = Hla i -1e,9Ap
+ i i-nendn (36)
H? = A+ H? (37)
Here,
D 0 )
gr.=| P ? (38)
"2-455232 czAg';aa, D

and A is a block Toeplitz matrix with the first column

L 0
Aaiey = [ H!a :i-ne,nB) ] (39)

By using these relations, we identify unknown param-
eters (Azl, Aza, By, Cy, Cy, D).
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4.2.2 Discussions: In the existing 4SID method,
because the obtained state space has no meaning in
physical sense, we can not use the prior knowledge even
if we know the pole location of the system, partly. It
is expected that if we can use this information, more
accurate models are obtained. On the other hand, in
our method, we can use the prior knowledge. Moreover,
we do not use the knowledge of the zero location of the
system. If we try to split the system P to the known
part P and the unknown part P,, such that

P=P,+P. or P=P,, P (40)
we must require the zero location of Py. However in
our method, we need only the partial pole location.

In the stage 1, we consider the system shown in (1)
whose input-output equation is (6). On the other hand,
the stage 2 considers the system shown in (4) whose
input-output equation is (29). However, the noise at-
tenuation in the stage 1 can be adopted to (29) and we
can combine the noise attenuation and use of the prior
knowledge. The algorithm of the method in the stage
2 is shown in the next section as the combined method
with the stage 1.

4.3 Algorithm
In this section, we show the algorithm of our method.
At first, rewrite (29) as

=DiCan1 +HI X+ Hi Vi a1 v +Ss,a121,1\;
4]

Yiat1,N

where X3, is obtained from a simulation.
[Stepl] Noise attenuation: Multiply (41) by

1 . .
ﬁUZ;_,-_l,l'N from the right, we have the following
input-output equation achieving the noise attenua-
tion.

?:I—';?..-I-H}X'FH?(? (42)
=~ 1 = 1 —
Y =N1 a+1NU at+i-1,N» -'—'-'=N—'- U+:—1N
(43) -
~ 1 k T - 1 T
X = g XotUaticins U= GUiat1,00asio N
(44)
( lim — s "5. ar1t, MU i n | = O)
Here we assume
rank[g]=p+i (45)

. [Step2] QR decomposition: By using }7, U and
X, compute the following QR decomposition.

)z Ry 0 o5
U = R21 Rzz Q2 (46)
1% R3; Rs2 Rss Qs

From (46}, following equations hold.

~

Y = ﬁg(:.l :p))? + ﬁs(:.p-f 1:p+ i)i} + R33Q3(47)

= Ru o0 17!
R; :=| R R

3:= [ Rs1 Rz | [ Ry1 R ] (48)
[Step3] Identification of C,, A;;: Because

Sia+1,N is attenuated,

R33Q3 = -/[ (49)

is satisfied from (29) and (47). By the singular value
decomposition of R33

T
-t 1[5 8][3] @

Tn-p } (51)
T } (52)

Sy :=diag{ o1 o2
Sy = diag{ On—p+l On—pt2

I'; is obtained by

Fi=Un (53)

where we assume op_p 3> 0,_pt1. From (53), C and
Ay, are obtained by

Co=Una:¢ (54)

Agp = [Upt1: (i -1y, ~)]TU (E+1:ie,:) (55)

[Step4] Identification of C;, Az;: From (42)
and (47), H} is given as

Hi = ﬁ;;(:,l :p) (56)

and from (32), (36) and (53), by using (56), C; and
Ajy; are given as

Ci=H!a:e (57)
A2 = [Unr:(i- 1)(.:)]*
x [Hle+1:ie)— Hla:G-pe,nAn] (58)
[Step5] Identification of By, D: From (37),
()" B = (U3)" (2 - A)
= (U,',L)T [ﬁs(:,pl-&-l Hp+i)) = A] (59)

is satisfied. Because A is obtained from (39) By and
D are obtained based on the following equation.

L(:, 1) Ulai:e97 UG-+ i )T
L(:,2) Utce+1:2¢97T 0
L(;,i) U,,*((i—!)l.+l cie, )T ... 0o’
I 0 D ]
x [ 0 Un(l:(i-1t:) ] [ B (60)
L:=(UHT (Bs.pt + 1.(p+i)t) = A) (61)

5 Numerical example

In this section, we evaluate the effectiveness of the
proposed method by numerical example with the closed
loop identification.
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Figure 1: 2-mass spring system

5.1 System description

Consider the 2-mass spring system shown in Fig.1.
The output y is the disk rotation and the input is the
torque of motor. By considering the equation of mo-
tion, the nominal transfer function P, (s) of this system
is given by[8]

2.38 x 10°

Pm(s) = s(s +13.6)(s + a)(s + @)’

a=2815+32.1j

(62)
While we assume that the transfer function P(s) of the
real system is given by

1.19 x 105

P(s) = s(s+15.2)(s + b)(5 + b)’

b = 8.95 + 48.6;

(63
Because this system has one inherent integrator and tht)z
pole at s = —13.6 is perturbed a little, we regard this
system has inherent poles at s = 0,-13.6. By using
this information, we identify P(s) in the discrete-time
domain using the closed loop identification.

5.2 Closed loop identification

Consider the closed loop system shown in Fig.2.
Here, K is the controller designed by the H loop shap-
ing control(9] using the model P,,(s) with appropriate
weighting function, w and v are noises and r is the ref-
erence s1gna,l which is M- A-sequence signal. From y, u
and z*, we compute ¥, I and X* defined in (43) and
(44) usmg t = 10, a = 250, N = 16000 and the sam-
pling time T = 0.01(s), and identify (A,,, Az,, By, Cj,
C, D). In the closed loop identification, it is known
that the input u has correlation with noises, and (20)

v

Il
a :

+

P

N

K

Known poles
location system

Figure 2: Closed loop system
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is not satisfied. However, by the same consideration as
in section 4.1, we can make use of the noise reduction
scheme as follows.

Split the basic equation (29) into a deterministic and
stochastic part as follows,

YA N+ Y58 =TiE +2))
+ H (XM 4 X") + Hz(U“, n + U5 n)(64)

where the superscript "d" means the deterministic
part which is the part corresponding to the refernce sig-
nal r, and ”s” implies the stochastic part which corre-
sponds to the noise. Because r does not correlate with
the noise but the deterministic term, if we use such
Rotio11,n in place of Upyioy 1 N in (43), (44) as

T Tro TN
Rojicia N =
Tati~1 Ta+i Tat+i+N-2
(65)
then

Jim Nﬁ” Rlyian| 20 (66)

lim ""[ ]sRaq—; 1anf=0 (67)

N—oo

hold. Therefore noise attenuation can be achieved in
the same way in section 4.1. The stage 2 can be per-
formed as shown in section 4.2.

The gain plots of the identified model PP(s) is
shown in Fig.3. For comparison, we identify another
model PS° by using the conventional 45ID method[2].
Both models are identified as 4th order system (in the
proposed method, two known poles and two unknown
poles). It is clear that PS5 can not be identified accu-
rately in the lower and the higher frequency. Moreover
for the model validation, we re-design the controller
KP" based on PP’(s) and K based on Py using the
same weighting function as before. The step responses
of G(P,K), G(P, K'?"), G(PPr, K?") and G(P, K'°°) are
shown in Fig.4, where

PK

68
T+PK (68)

G(P,K):=

Gain (dB)

Siofiaiiii

103

NI

102

10!
Frequency (rad/s)
Figure 3: Gain plots
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1.5F

—
T

Output (rad)

Time (sec)

Figure 4: Step responses

The step response of G(P, KP") is similar to that of
G(PE, K'P") while G(P, K°°) is not. These results tell
us that PP represents P more accurately than P2,
which shows the effectiveness of our method.

6 Conclusions

In this paper, we have proposed a new subspace
state-space system identification method taking ac-
count of both the noise attenuation and use of the prior
knowledge. At the first stage, we have attenuated the
noises in the input-output data based on the uncorrela-
tion between the input signal and the noise, where large
amount of data can be handled with the prescribed size
matrices. At the second stage, as a prior knowledge on
the plant, the pole location have been assumed to be
known partly. We have shown how to make use of
the prior knowledge for subspace identification. Fur-
thermore, the effectiveness of our method have been
illustrated by numerical examples.
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Appendix

A Algorithm of 4SID method

[Stepl]: By using Y ;n and U; j v, calculate QR
decomposition such as

Uijn | _| Ru 0 @
[ Yan ] - { Ry Ry ] Q2 ] (A-1)

when, the projections shown in (13), (14) is given as

Yijn/Uijn = R Ry Ui v (A.2)

Yiin /Ui n = R22Q2 (A.3)

[Step2] : By using the singular value decompo-
sition of R22

. L S5 0 [ v
R22 = [ Un Un ] [ 0 52 ‘,.'2T (A.4)
S := diag{oy o2 -+ on} (A.5)
Sy := diag{on41 Ony1 - Oic} (A.6)

if op > ony1 is satisfied, we can regard I'; as

U, =T, (A.T)

because of (17). From (A.7), C and A are obtained by
C=Un1:¢.:) (A.8)
A=[Un(1:(i—l)t.:)]t Untes1:ic, (A.9)

[Step3) : Because

(UHTRuR; = (USTH  (A.10)

is satisfied from (14) and (A.2), by determining = as
Z:= (UH)TRu Ry (A.11)

B and D are obtained from the following relation.

=(:,1) Uta:enT UL -ne+ i )T

=(:,4) Ub((i—1e+1:i6,)7-.. 0

Ie 0 D .
x [ 0 Unll:(i-1t:) ] [ B ] (A-12)

where I is £th order identity.
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