Proceedings of the 2004 IEEE
International Conference on Robotics & Automation
New Orleans, LA « April 2004

Design of the Continuous Symbol Space
for the Intelligent Robots
using the Dynamics-based Information Processing

Masafumi OKADA*! and Yoshihiko NAKAMURA*!*2
*1Dept. of Mechano-Informatics, University of Tokyo
7-3-1 Hongo Bunkyo-ku Tokyo, 113-8656 Japan
*2CREST Program, Japan Science and Technology Corporation

Abstract

In this paper, we design the continuous symbol space us-
ing the dynamics-based information processing system.
One point in the symbol space decides a vector field in
the motion space that generates the cyclic motion and
the continuous motion transition of the robots. Because
the motion of the state vector in the symbol space is
defined by a dynamical system, the spatial and tempo-
ral continuous information processing system is realized.
Keywords: brain-like information processing, dynami-
cal system, continuous system, symbol space

1 Introduction

So far, for the intelligent robots, the information pro-
cessing system that generates the robot motion has been
represented by the discrete time event system based on
the artificial intelligence. In this system, the motions are
labeled by the symbols such as ”walk”, ”run” and so on,
and each symbol is corresponding to the motion pattern
trajectory and the robust feedback controller that stabi-
lize the robot. Because the discrete time event system
eliminates the temporal continuity, the motion change
and the motion transition are independent to the real
time, and executed based on the sensor signal or the so-
matic sensation of the robot. The timing of these events
is given by the designer directly or by the cost function
for optimality. The motion pattern trajectory is fixed
and only the designed pattern is generated. The start
posture and the final posture are given, that yields the
discontinuous motion transition. This is due to the elim-
ination of the spatial continuity in the motion generation
system. For the smooth motion and the motion transi-
tion of the robot in the real world, the temporally and
spatially continuous information processing system and
motion generation system are necessary.

On the other hand, in the biological information process-
ing, the nonlinear dynamical phenomena are found. Free-
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man showed the nonlinear dynamical phenomena in rab-
bits’ olfactory perception[l, 2, 3]. For the known smell,
the order is seen and for the unknown smell, the chaotic
phenomenon is seen. Tsuda showed the importance of
the chaotic dynamics for learning and intelligence, and
calls the phenomenon such that the human brain tran-
sits from one attractor to another as ’chaotic itinerancy’
[4]. Because the dynamics is the temporally and spatially
continuous system, the effectiveness of dynamics for the
tool of the information processing in the real world is
paid much attention. It is known that the CPG (Cen-
tral pattern generator) has the entrainment phenomenon
in the natural frequency. The walk motion generation
of the quadruped locomotion robot was realized based
on the dynamic interaction with the environment [5] and
the rhythmical motion was realized [6] using the CPG.
Ijspeert developed the movement imitation of the hu-
manoid robot using the CPG based dynamics [7].

On the other hand, we have developed the design method
of the dynamics that has an attractor on the closed
curved line in the NV dimensional space, and proposed the
dynamics-based information processing system that gen-
erated the humanoid whole body motion[§]. By changing
the configuration of the dynamics, the smooth motion
transition is realized. This system uses the temporal and
spatial continuous characteristic of the dynamics.

In this paper, based on the dynamics-based information
processing system, we develop the design method of the
continuous symbol space that represents the humanoid
motion, and the motion reduction method for the design
of the motion space using the nonlinear mapping func-
tion. One point in the symbol space defines one dynamics
in the motion space, and the motion of the state vector
in the motion space yields the motion trajectory of the
humanoid motion, which means the point in the symbol
space represents the symbol of the motion. Any points
in the symbol space correspond to the dynamics in the
motion space, which means the symbol space is spatially
continuous. The motion of the state vector in the symbol
space according to the dynamics yields the change of the



configuration of the dynamics in the motion space, which
yields the temporally continuous motion generation and
motion transition.

2 Dynamics-based information processing

In this section, we will explain about the dynamics-based
information processing system[8]. Consider the cyclic
whole body motion M of the robot with N joints. The
posture (joint angles) f[k] in time k is represented by
one point in N dimensional joint space. The whole body
motion M consists of the sequence of §[k] as follows,

M=[o6[1] 62 0[m] ] (1)

and it draws a closed curved line C' as shown in Figure 1,
where m means the number of data.
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Figure 1: Robot posture, motion in the joint space

On the other hand, consider the discrete time dynamics
as shown in the following difference equation.

w[k +1] = z[k] + f(z[k]) (2)

Suppose that this dynamics has an attractor on the closed
curved line C, which means the state vector x[k] start
from the initial value &g converges to the following equa-

tion
3)

where kg depends on xg. In this case, the dynamics mem-
orizes and reproduces the whole body motion M.

lim x[k] = [k + ko)

k—o0

By defining f(«[k]) as the vector field in x-space, the
dynamics in equation (2) is designed by the polynomial
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configuration using the least square method. The detail
is omitted in this paper.

When the dynamics memorizes multi-motions M;, Ms,
-+, f(z[k]) in equation (2) is represented by the summa-
tion of the vector fields as follows.

F@lk) =Y wif (k) (4)
By changing the weighting parameters w;, the basin of
the attractors are changed.

3 Motion reduction using the nonlinear mapping
function

Because the robot such as a humanoid robot, has many
joints, the dimension of x[k] increases, and to design
the dynamics costs longer time and requires larger com-
putational power, the motion reduction method is re-
quired. Tatani[9] proposed the motion reduction method
using the neural network based NLPCA method. In this
method, the reduced motion cannot be specified. We
proposed the motion reduction method using the prin-
cipal component analysis based on the singular value
decomposition[8]. Because this method uses the linear
projection, the reduced dimension is not so small.

In this paper, we propose the motion reduction method
using nonlinear mapping function. From the reduced
state vector x[k] € R", the joint angle [k] € R" is
generated by the following equation.

0[k] = F(x[k]) ()

We obtain the common F' for all motions M; by using
the nonlinear function with the polynomial configuration.
For the motion M;, the reduced closed curved line C; is
calculated, and the dynamics in equation (2) is designed.

Consider the robot motion M with N joints represented
by the following equation.

M=1[6[1] 62 fm] ] € RM*™ (6)

The reduced representation of M is assume to be repre-
sented by C

C=[z[1] =2 z[m] | € R™™

(7)

where n < N is satisfied. We obtain the mapping func-
tion in equation (5) that calculates 6[k] from x[k]. We
set the configuration of F'(z[k]) as the polynomial func-
tion of z; (i =1,2,---,n) that are the elements of x. For
example, when n = 2, the ¢-th order polynomial function
is represented by

9 = A¢ (8)

A=[aw a1y ag-—1)2 a1 ago | (9)
T

&= [ xf w&éil)wz :vgeﬂ)w% xy 1 ] (10)



When C' is given, A is obtained by the solution of the
least square method. In the following, the calculation
algorithm for F(x[k]) is illustrated.

Stepl From 6[k] in M, obtain the following matrix.

o=[on) 6 - om] (1)
Define z[k] in the closed curved line C' that cor-
responds to the motion in the reduced space, and

obtain the following matrix.

E=[¢A] &2l ¢[m] ]

Any pattern of z[k], (k = 1,2,---,m) is available
except self cross curves.

(12)

Step2 From © and Z, obtain A as follows.
A=0z* (13)

where [ - ]# means the pseudo inverse matrix.

Step3 To improve the accuracy of A= and O, we change
x[k] as follows. Set the criterion function J[k] as

T = 5 1161K] — A€K]I® (14)

and change z[k] as follows.
z[k] = z[k] — g—ia (15)
o= (-a%) em-agm o

where ¢ is constant.

Step4 Iterate Step2 and Step3.

Figure 2 shows the example of the calculation of C' and
A. The upper figure shows the initial pattern of M €
R? (dashed line) and obtained © = AZ (solid line), the
lower figure shows the original C' € R* (dashed line) and
modified C (solid line). The upper figure shows the joint
space and the closed curved line shows the whole body
motion. In the lower figure, the original C' is given by the
circle, and after the iteration, the reduced motion is given
by the dashed line that approximate M more accurately.

4 Design of the continuous symbol space

4.1 Symbol space and motion space

In this section, we explain about the continuous symbol
space that defines the dynamics in the motion space and
the design method of the dynamics in the continuous sym-
bol space. Figure 3 shows the concept of the continuous
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Figure 2: Projection to reduced space

symbol space. One point in the symbol space defines the
dynamics in the motion space. The state vector moves
following the vector field of the dynamics. The state vec-
tor in the symbol space moves following the dynamics,
which changes the configuration of the dynamics in the
motion space, and the motion generation and transition
of the robot is realized.

Symbol Space Motion Space

RY)

Figure 3: Symbol space and motion space

4.2 Design of the symbol space
In this section, we describe the design method of the sym-
bol space and dynamics.

Stepl Consider the two motions M; and M> represented



by

Step2 Obtain some motions M; between M; and Ms.
For example M; are calculated from the following
equation.

Mi = (1_az)M1 +aiM2 (Z :37475:"') (19)
where, 0 < a; < 1 is satisfied.

Step3 For the whole body motions M;, obtain the re-
duced motion C;

Ci = [ Sﬂl[l] (DZ[Q] (20)

For all ¢ and k, the function F(-) satisfies the fol-
lowing equation.

x;[m] |

0i[k] = F(i[k)) (21)

Step4 Design the dynamics with the polynomial config-
uration

Ailk + 1] = Ailk] + g5(Alk]) (22)
that has an attractor on C;. Where, g;(\:[k]) is
represented by

g(Ai[k]) = @6 (Ni[k])

®; consists of the coefficients of the polynomial
function same as A shown in equation (8).

(23)

Step5 From ®; (i =1,2,---p), obtain A and ¢ that sat-
isfy the following equation.

o, Al Aol Mgl

Py Aol Aool Aag I 1
<I; A . I X ' I A ' I O
P pl P2 Pq
(24)
By defining ®;
ei=[ef - of ] (25)
the singular value decomposition of ®
P11 Py PNy
P15 Do 3P
o= . . (26)
@y, P9 DNy
A1 A1g
ot e dag ||
P = ) ) ; (27)
Ap1 Apg %

gives the solution of A and ¢. Equation (24) means
that the plurality of the dynamics ®; that have the
polynomial configuration are represented by the less
number of the basis function ¢;, which means the
reduction of the functional space of the dynamics.
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Figure 4: Connection of the symbol space and the motion
space

Step6 The vector \;

T
represents a point in ¢-dimensional ¢-space. The
vector A\; defines ®; as follows,

T T

®; = )\i [ ¢1 ¢q ]

that defines the dynamics in the motion space. This
result shows the spatially continuous connection
such that the state vector in the symbol space de-
fines the motion space and the state vector in the
motion space defines the robot motion. By defining
the dynamics that decides the motion of the state
vector A;, the temporally continuous connection is
realized.

(29)

The process of the information processing is represented
in Figure 4. @ is obtained by the summation of ¢; at
the rate of A\;. The dynamics defined by @ yields the
motion of x[k]. By the mapping function F', the reduced
motion xz[k] is extracted to the joint angles of the robot



0[k]. Because the symbol space is continuous space and
the dynamics in this space is continuous system, the con-
tinuous change of the vector field in the motion space and
the continuous motion transition is realized.

5 Motion generation of the humanoid robot

In this section, we generate the whole body motion of the
humanoid robot shown in Figure 5. This robot is HOAP-

Figure 5: Humanoid robot HOAP-1

1 produced by FUJITSU Co., and it has 20 joints. We
design the walk motion W,, and the squat motion Wy that
are shown in Figure 6. The upper figure shows the walk
motion and the lower motion shows the squat motion. We

Figure 6: Motion of the humanoid robot

obtain 22 motions interpolating M,, and M; as follows.
i)

M= (1-
21
i=0,1,---21

M, + — M,

51 (30)

Each motion is reduced to 3 dimensional motion C; and
we obtain the function F(x[k]) that extracts x[k] to the
joint angles. And we design the dynamics that has an
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attractor on C; as follows.

xz[k + 1] = z[k] + ®;¢(x[k]) (31)

Based on Step5, we obtain the 8 dimensional symbol
space. The reduced motion C; correspond to A; (i =
0,1,---21). The state vector A[k] in the symbol space
moves according to the dynamics

Ak + 1] = Ak] + g(A[k)]) (32)

that has an attractor on the opened curved line Ag = A1
— - --A21. Figure 7 shows the generated humanoid whole
body motion. The left hand side shows the motion of
the dynamics in the symbol space. The symbol space is
design as the 8 dimensional space, however only 3 dimen-
sions are illustrated for simplicity. The middle shows the
motion of the dynamics in the reduced motion space and
the right hand side shows the motion of the humanoid
robot. The point A[k] in the symbol space defines the
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Figure 7: Motion generation of the humanoid robot

generated motion and the point x[k] in the motion space
defines the trajectory of the robot joints. The smooth
motion transition is realized.

6 Conclusions

The results of this paper are as follows.



1. We design the continuous symbol space.

(a) One point in the symbol space defines the dy-
namics in the motion space, which means the
point in the symbol space corresponds to the
symbol of the motion.

(b) All the point in the symbol space define a
robot motion, which means the symbol space

is spatially continuous.

(¢) The point in the symbol space moves according
to the dynamics, which means the information

processing is timely continuous.

2. We propose the motion reduction method using the
nonlinear mapping function, and design the reduced
motion space.

(a) One point in the motion space defines the pos-
ture of the robot and the motion of the state
vector in the motion space yields the whole
body motion.

The dynamics in the motion space produces
the trajectory of the joint angles.

The configuration of the dynamics in the mo-
tion space is changed by the dynamics in the
symbol space, which is temporally and spa-
tially continuous.

3. We design the symbol space and the motion space
that yields the humanoid robot motion with 20
degrees-of-freedom.
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