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Abstract: Robot motions are generated based on stabilizing controllers and reference motion patterns. On the 
other hand, human motions are determined through the interaction between the body and its environments. 
Motion patterns are not prepared a priori but emerge as the results of an entrainment phenomenon of the 
dynamics. So far, we have developed a controller design method that makes a dynamics entrain to the specific 
closed curved line. However, the obtained attractor is sometimes different from a desired one. That is fatal error 
for a robot motion with a drastic change of the dynamical characteristic of the robot body through the motion. In 
this paper, we develop a modified attractor design method based on energy distance in the state space. 
 
1 INTRODUCTION 
 
For industrial robots, the robot control systems have 
been designed using reference motion patterns and 
stabilizing controllers as shown in figure 1. The 

reference motion patterns are designed considering 
environments where the robot works and controllers 
are designed based on the robot body dynamics. For 
industrial robots, because the environments are fixed 
and the purpose of the control system is a precise task 
execution, this type of control system is suitable and 
many effective results have been reported. The main 
purpose of the controller is making the robot 
trajectory coincide to the reference motion pattern 
and ensures the robust stability of the closed loop 
system. The same strategy is employed for humanoid 
robots. The reference motion patterns are designed so 
that the robot dynamics (zero moment point : ZMP 
and center of gravity : COG) satisfies the dynamical 
constraints with environments. However, because 
humanoid robots move in unknown environments, 
the fixed motion patterns are not appropriate and the 
robustness of the controller is not sufficient. 

 

On the other hand, the human motions are generated 
through the interaction between body dynamics, 
information processing and environments as shown in 
figure 2.  The motion patterns are not prepared a 
priori but emerged as the results of the interaction of 
these dynamics. This concept corresponds with 
"embodiment" [Pfeifer, 2001] that represents a close 
relationship between body and intelligence in the 
brain science research field. For intelligent robots, a 
new control method that defines the motion pattern 
autonomously by the interaction with environments 
in real-time is required in the changing environments. 

 

Figure 2:  Motion generation of the human 
 
From mathematics and control engineering points of 
view, the motion generation through the interaction 
between the body and environments, interpreted into 
the entrainment phenomenon of the nonlinear 
dynamics, and the generated motion pattern 
corresponds to an orbit attractor. The robot body 
dynamics is controlled so that it is entrained to a 
specific closed curved line from any initial points, 
which yields the motion and motion pattern. Some 
researchers have challenged to design a motion 
generation system based on dynamics approach. 
Kotosaka [Kotosaka, 2000], Tsujita [Tsujita, 2003] 

 
Figure 1: Motion control system for industrial 

robots 
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and Ijspeert [Ijspeert, 2002] proposed the motion 
generation system using central pattern generator 
(CPG). Sekiguchi [Sekiguchi, 2000] proposed a 
chaotic dynamics based method for a mobile robot. 
However these methods use existing dynamics, the 
parameter adjustment with trial and error plays an 
important role for designing entrainment 
phenomenon, which means the systematic design 
algorithm does not exist. Tani [Tani, 2003] proposed 
recurrent neural network based attractor design 
method. Because the existence of orbit attractor is not 
guaranteed, this method stays in analysis of 
phenomenon. Kawashima [Kawashima, 2002] 
proposed linear dynamics design method to recognize 
the similarity of the pattern from signal processing 
point of view. Adachi [Adachi, 2003] designed 
dynamics for motion pattern generation with 
lyapunov function based method. These methods do 
not contain the robot body dynamics, and in [Adachi, 
2003], it is difficult to design a dynamics in more 
than four dimensional space because of the 
complexity of the design algorithm. 
 
On the other hand, we have proposed an attractor 
design method of nonlinear dynamics that leads 
motion emergence of the humanoid robot [Okada, 
2005]. In this method, we set a desirable motion 
trajectory and design a controller so that this 
trajectory will be an orbit attractor with a polynomial 
representation in the state space of the robot body 
dynamics [Okada, 2002]. The bending knee motion 
of the humanoid robot is realized, however the 
controller is calculated using a least square method 
that minimizes the input power using multi-step 
ahead prediction of the state variable, a contradiction 
is caused in causality between input and trajectory 
generation. That yields a large difference between the 
desired trajectory and generated motion, which is a 
fatal error when the robot body dynamics is 
drastically changed while its motion. 
 
In this paper, we declare the problem of the 
conventional method and propose modified methods 
based on energy distance in the state space. The 
proposed methods are applied to an inverted 
pendulum system, and the effectiveness of the 
proposed methods is illustrated. 

 

2. ATTRACTOR DESIGN METHOD 
 
2.1 Minimization of the input power 
 
In this section, I will illustrate the attractor design 
method in reference [Okada, 2002]. For simplicity, 
the dynamics is assumed to be controllable and 
represented by the following linear discrete time 

difference equation, 
 

][][]1[ kBukAxkx +=+   (1) 
 
where nRkx ∈][  is a state variable and mRku ∈][  
is an input signal. In the design algorithm, ][ku  is 
represented by the function of ][kx  such that 
 

])[(][ kxfku =    (2) 
 
and the controller is designed so that the closed loop 
system 
 

])[(][]1[ kxBfkAxkx +=+   (3) 
 
has an attractor on the specific closed curved line Ξ  
 

[ ]Nξξξ L21=Ξ   (4) 
 
which is given. The controller is designed by defining 
a vector field (pairs of ( ][kx , ][ku )) and 
approximating ])[( kxf  by l-th order polynomial of 

][kx . 
 
It is assumed that Ξ  is realizable, which means the 
sequence of input signal ][ku  (k = 1, 2, …) that 
moves the state variable along with Ξ  exists. The 
controller is designed as follows. 
 
[Step 1] Set ix  in x-space and find iξ  that is 
nearest to ix . 
 
[Step 2] jix +  is j-step ahead prediction of ix  that is 
represented by the following equation. 
 

UxAx i
j

ji Γ+=+    (5) 
[ ]BAABB j 1−=Γ L   (6) 
[ ]T

ji
T
i

T
i uuuU 11 −++= L   (7) 

 
[Step 3] Because Γ  is an extended controllable 
matrix with column full rank when $ nj ≥ , U  that 
takes jix +  onto ji+ξ  exists and obtained by 
 

)(#
i

j
ji xAU −Γ= +ξ   (8) 

 
[Step 4] By using the obtained U , we calculate kx , 
(k = i+1, … , i+j-1) and obtain pairs of (x, u). By 
defining many initial points ix  and obtaining many 
pairs of (x, u), ])[( kxf  in equation (2) is obtained 
by polynomial approximation. 

 

2.2 Contradiction in causality 
 
Though jix +  is guaranteed to coincide to ji+ξ , the 
trajectory from ix  to jix +  is not specified a priori. 
Equation (8) means the minimization of the input 
power, and 1+ix , 2+ix , …, 1−+ jix  is defined 
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subsequently, which does not guarantee for the state 
variable to pass near Ξ. As shown in figure 3, when 
the motion of the dynamics is slow, the conventional 
method is effective (which means xk ≈  ξk, (k = i+1, 
…, i+j-1)), however when the motion is fast, the 
obtained trajectory makes a short cut and can be 
distant from Ξ. 
 

 

The following results show an example. Consider the 
inverted pendulum system as shown in figure 4. 

Setting θ (the rotational angle of the pendulum), y 
(position of the cart) and u (input force), and defining 
the state vector x as follows, 
 
  [ ]Tyyx &&θθ=   (9) 

 
Figure 3: Desired closed curved line and obtained 

trajectory 

 
Figure 4: Inverted pendulum system 

 
Figure 5: Reference motion pattern of the inverted 

pendulum system in state space  

 
Figure 6: Reference motion pattern of the inverted 

pendulum system in the real world  

 
Figure 7: Trajectory of obtained x via    
        conventional method 

 
Figure 8: Norm of ||ξk − xk|| via conventional   
        method  
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the dynamic equation is obtained. By discretizing the 
dynamics in a sampling time T, we obtain a discrete 
time dynamics in equation (1). We set Ξ as shown in 
figure 5 and the motion of the inverted pendulum in 
the real world is shown in figure 6. 
Though x is a 4 dimensional vector, 3 dimensional 
space whose coordinates are θ, y and y&  are shown 
for simplicity. Based on Ξ, a controller is designed. 
Figure 7 shows Ξ and one example of the obtained 
trajectory xk, (k = i, …, i+41). Though xi+41 coincides 
to ξi+41, the trajectory makes short cut. Figure 8 

shows ||ξk − xk|| using obtained xk. ||ξk − xk|| does not 
decrease, which means xk does not go along with ξk. 
From the obtained pairs of (x, u), f(x[k]) is 
approximated by 6th-order polynomial. Figure 9 
shows the trajectory of the controlled dynamics 

starting from two initial points represented by “∗”. 
Though the dynamics is stabilized to one attractor, it 
is different from Ξ. The motion of the inverted 
pendulum system in the real world is shown in figure 

10. The initial state variable is set to ξ1. Comparing 
with figure 6, the velocity is sometimes small which 
is indicated by circles in figure 10. 
 
In this example, because the control object is a linear 
system, the difference between the obtained 
trajectory and Ξ is not fatal error. When the system is 
nonlinear, we use the linear approximated system Ak, 
Bk around each $ξk. Γ is set assuming xk goes along 
with ξk, which means the difference between the 
obtained trajectory and Ξ is fatal. This problem is led 
by the contradiction in causality related to the input 
signal and trajectory, which causes unstable motion 
when the dynamic characteristic drastically changes 
through the motion such as walk motion. In the 
following section, a modified attractor design method 
is proposed. 

 
3. TRAJECTORY-BASED ATTRACTOR  
  DESIGN METHOD 
 
3.1 Euclid distance-based design method 
 
In this section, I will show an attractor design method 
minimizing the distance between xk and ξk. From 
equation (1), we obtain the following equations. 
 
  UkxX k BA +=+ ][1   (10) 

 
 

(11) 
 
 

 
 

(12) 
 
 
 

 
Using these equations, we obtain U as follows. 
 

( )ik xU AB −Ξ= +1
#   (13) 
[ ]TT

ji
T
i

T
ik ++++ =Ξ ξξξ L211   (14) 

 
Equation (13) means the minimization of the 
following criterion function J, 
 

∑
=

++ −=
j

ii xJ
1κ

κκξ   (15) 
 
which corresponds to square summation of Euclid 
 distance between xk and ξk (k = i+1,…, i+j) as sown  
 
 
 
 

 
Figure 9: Trajectory of the dynamics via  
        conventional method  

 
Figure 10: Motion of the inverted pendulum  
         system in the real world with     
         conventional method 
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Figure 11: Definition of Euclid distance in the  
         criterion function 
 
 

 
in figure 11. By the same way as conventional 
method, we obtain some pairs of (x, u) and design a 
controller. Figure 12 shows Ξ and one example of xk, 
(k = i, …, i+41) like figure 7. Comparing to figure 7, 
xk goes along with ξk. Figure 13 shows the obtained 
euclid norm ||ξk − xk||. xk approaches ξk with 
increasing of k. Figure 14 shows the trajectory of the 
controlled dynamics. The controller is designed using 
6th order polynomial which is same as previous 
section. Comparing with figure 9, the obtained 
trajectory is similar to Ξ. 

 

3.2 Energy distance-based design method 

 
In the Euclid distance-based method, the dynamics 
does not converge enough to the attractor. x[k] takes 
other routes in each cycle and the trajectory draws 
thick line in figure 14. This is because the 
convergence rate of ||ξk − xk|| in figure 13 is low. In 
the following, I propose the modifying method. 
 
When a state variable x[k] of a stable dynamics 
converges to zero, Euclid distance || x[k] || does not 
correspond to how the state vector x[k] approaches to 
zero. Figure 15 shows a concept chart. The left hand 

side shows the trajectory of x[k] starting from x[0] in 
state space. ||x[j]|| < ||x[i]|| ( j > i ) is not always 
satisfied, which means x[j] is more convergent than 
x[i] but ||x[j]|| can be likely larger than ||x[i]||. On the 
other hand, as shown in the right hand side, x 
-coordinates is transformed to x~ -coordinates by the 
transform matrix F and when || ][~ jx || < || ][~ ix || ( j > i) 
is always satisfied, Euclid distance || x~ ||  
corresponds to the convergence rate of the state 
variable in x~  state space. In the following, 
calculation method of F is illustrated. 
 
Consider a conservative system represented by the 
following differential equation. 
 

Axx =&  , nRx ∈    (16) 
 

 
Figure 12: Trajectory of obtained x via the  
         least square method 

 
Figure 13: Norm of ||ξk − xk|| via the least  
         square method 

 
Figure 14: Trajectory of the dynamics via the 
         least square method 

 
Figure 15: Convergence of dynamics 
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where we assume that A is diagonalizable. The state 
variable x starting from x0 moves on the shell of a 
ellipsoid in n-dimensional space with its center on the 
origin. Let's obtain a matrix F that transforms the 
ellipsoid to sphere. Consider the eigen value 
decomposition of A as follows. 
 

1−Λ= TTA    (17) 
=Λ diag { }nλλλ L,, 21   (18) 

 
Because the dynamics is a conservative system,  

 
Real 0))(( =Aλ    (19) 

 
is satisfied. Here, we consider x)  defined by the 
following transformation. 
 

xTx 1~ −=    (20) 
 
The solution )(~ tx of the differential equation (16) is 
represented by the following equation 
 
  =Λ= 0

~)exp(~ xtx diag { } 0
~,, 21 xeee ttt nλλλ L  

    (21) 
where 0

~x  means the initial value. The inner product 
of )(~ tx  satisfies the following equation. 
 

( ) )()()(~)(~ 1*1* txTTtxtxtx T −−=  (22) 
   

*
0

~x= diag { }tt nnee )()( *
1

*
1 , λλλλ ++ L 0

~x  (23) 
0

*
0
~~ xx= = Const.   (24) 

 
Though equation (24) represents a sphere, 

)(~ tx -space consists of complex number. The singular 
value decomposition 
 
  ( ) TUSUTT =−− 1*1    (25) 
 
gives the transformation matrix F with real number 
 
  Fxx =ˆ     (26) 
  TUSF 2/1=    (27) 
 
that transforms the ellipsoid in x-space to a sphere in 
x̂ -space. Equation (24) means Hamiltonian 
(conservation value) that corresponds to the energy of 
the system. 
 
From these considerations, the attractor design 
method is modified as follows using F. 
(1) Using defined xi, find ξi that minimizes || 

F(ξi − xi)||. 
(2) Define j in equation (10) that satisfies || 

F(ξi+j − xi+j)|| < ∆, where ∆ is a design parameter. 
j is calculated by 
 
  

( )
δ

ξ
log

)(loglog ii xF
j

−−∆
=  (28) 

 

    ∆<− )( ii
j xF ξδ   (29) 

 
where δ defines the convergence velocity of x(t). 

(3) By using a weighted least square method based 
of the following evaluation function, 

 
)(

1
ii

j

k

k xFJ −= ∑
=

− ξδ   (30) 
 
substituting for equation (15), energy distance is 
evaluated. 

 
Using the modified design method, we design a 
controller for the inverted pendulum system. Figure 
16 shows the obtained xk, (k = i, …, i+45), figure 17 
shows the value of || F(ξk − xk)||. xk converges to ξk in 
the sense of energy distance while k increases. 

 
 
 
 
 
 
 

 
Figure 16: Trajectory of obtained x via energy  
         distance method 

 
Figure 17: Norm of ||F (ξk − xk)|| via energy  
         distance method 
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Figure 18 shows the designed attractor and figure 19 
shows the motion of the inverted pendulum system in 
the real world. Comparing to figure 14, x[k] 
converges Ξ and the trajectory is represented by a 
thin line. 

 

4. CONCLUSIONS 
 
In this paper, I proposed the modified attractor design 
method from the linear control engineering point of 
view. 
(1) I declare the problem of the conventional method 

(causality of the relationship between the route 
and the input) that is the minimization of the 
input power.  

(2) To overcome the problem, I propose the 
modified methods that minimize Euclidean 

distance of multi-steps ahead predictions and the 
desired trajectory. 

(3) Moreover, we propose a new approach that 
evaluates the energy distance of the state variable, 
and shows that the designed attractor approaches 
the desired trajectory. 
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