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ABSTRACT: Recently, the importance of the joint desigu of identification and control hias been
recognized, and several controller design methods based on the iteration of identification and con-
troller re-design have been proposed. In these methods, the frequency weighted identification plays
an important role. On the other hand, as a powerful identification method, subspace state-space
system identification (4SID) method has been proposed. However, it is difficult to use the frequency
weight in conventional 4SID methods. In this paper, we propose a new frequency weighted subspace
state-space system identification method for the joint design of identification and control. First, we
give a new 4SID method using not only the input-output data of the system but also the nominal
model data. Second, we show how to introduce the frequency weight to our identification method,
which is relevant to the cost function for control. And third, we evaluate the cffectiveness of the
proposed method by a numerical example using an inverted pendulum system.
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1 Introduction

Recently, much attention is paid to the joint design of
identification and control [1]~[6]. In this method, we
iterate the closed-loop identification and controller de-
sign for the purpose of obtaining the high performance
of the closed loop system, and the {-equency weighted
identification plays an important role.

On the other hand, the scheme:s which identify
state-space models directly from the input-output
data are known as subspace state-space system iden-
tification (4SID) method and have received much
attention[7]~{13]. One of the merits of 4SID is that it
is applicable to MIMO systems as we!l as SISO systems.
Furthermore, these methods use reliable numerical com-
putation, and the computational coiaplexity of the al-
gorithms is lower than classical prediction error meth-
ods (PEM). The optimality of 4SID methods is known
as the quadratic optimization of muit-steps ahead pre-
diction errors [14). However, it is cifficult to use the
frequency weight in the framework ¢f the conventional
4SID. Moreover, the 4SID methods hi.ve still some other
problems in practical situations. For instance, they are
more sensitive to noise than PEM, an-1 require the prop-
erty that the noise vectors are white, so it is difficult
to identify systems operating in closed-loop exactly with
existing 4SID methods. Because of tiie above demerits,
Wwe can not use the 4SID as the power:ul tool of the joint
design of identification and control.

_ So in this paper, we propose a n(w subspace based
identification method which is related to the control rel-
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Figure 1: Projections

evant cost function and can attenuate noises by using
the nominal model data as the instrumental variable. In
addition, since the nominal model data are purely un-
correlated with noise in any cases, this method can be
applied to the closed-loop identification problem with the
similar formulation to the open-loop one. Furthermore,
by introducing the weighting function to this method, we
propose a joint design method of subspace system iden-
tification and control. Finally, the effectiveness of our
method is evaluated by numerical examples.

In this paper, we use the following notations. A/B is
the projection of the matrix A into the row space of B,
so that

A/B = ABY(BBT)IB. (1)

A/cB is the projection of A along the row space of B
into the row space of C[10}, so that

AlcB =[4/CY)-[B/CH!B, (2)

where A/B* is the projection of the A into the orthogo-
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nal complement to Image(B)(see Fig.1). ]T and ||-|| de-
notes the Moore-Penrose pseudo-inverse a.nd the Frobe-
nius norm respectively. A(i: j,k:¢) denotes the subma-
trix of A consisting of rows i to j and columns & to ¢,
and also A(i: j,:) denotes the submatrix of rows 1 to j.

2 Problem formulation

2.1 Joint design problem

Consider the linear time-invariant system P given by the
following state-space formula.

P:{ Zplk +1]

Apzplk] + Bpuplk) + wlk] 3)
Yplk)

Cpzplk} + Dpuplk) + v[k]

where z, € R"(the state vector), u, € R™(the input
vector) and y, € R'(the output vector). v € R’ and
w € R" are assumed to be zero mean noise vectors.

Our goal is to design the controller I;,(i = 1,2,---)
which minimizes J.(P, K;) as

| o
&(P,K;) = P(I + K;P)™ (5)
¥(P,K:) = K:P(I + K;P)™ (6)

by iterating the closed-loop identification and controller
design. Here W, and W, are frequency depended weight-
ing functions which are given a priori. First, we make
the following assumptions.

[Assumption 1] The nominal model Pp; of P

P ¢ { Tm1lk+1] : Amn1Zm1[*] + Brniumi (k]

Ymi k] lexml[k] + Dmitnn (K]
o (7
is given.
[Assumption 2] The controller K designed by
K, = arg m}n Je(Pm1, K) (8)

can stabilize P.

[Assumption 3] The initial state of the plant is zero.

2.2 Controller design problem

The controller I(; is designed based on (4). However,
because P is unknown, it is obtained by
K; = arg n}}n Je(Pumi, K) 9)

alternatively. Here P,,; is the i-th model identified in the
i-th iteration stage.

+ Up +

K <l

Figure 2: Closed loop system

2.3 Closed-loop identification problem

As for the criterion function in (4) in the i-th iteration
stage, the following inequality is satisfied.

W, 8(Pri, K)
Jo(P, Ki) " W, Pm,,Ix)
VV( (P I() Q( Pri, K ))
+| Wi (¥(P, K;) — ¥(Pri, Ki)) ||, 1o

Because the first term of the right hand side is minimized
by K; in (9), we aim at minimizing the second term by
the closed-loop identification. It is the basic idea of the
joint design of identification and control(1]. Moreover J.
consists of two transfer functions ® and ¥. Because ¢
corresponds to the performance of the closed loop sys-
tem such as the disturbance rejection, while ¥ relates
to the stability for the model uncertainty (which is dif-
ficult to idetify), we adopt the criterion function for the
identification to be

Pyy(i41) = argmin Jia(Pm, ) (11)
Jia = [Wo(@(P,IG) = @(Pm, K, (12)

3 Identification method

As mentioned above, in the joint design of identification
and control, we must identify the model P using fre-
quency weighting function. However in the conventional
4SID methods, we can not introduce the weighting func-
tion. So in this section, we propose a new 4SID method
of which cost function is related to the H; norm, and
introduce the frequency weighted identification.

3.1 Model-subspace based state space
identiﬁcation

Consider the closed loop system shown in Fig.2 where 7
is a reference signal for identification and assumed to be
uncorrelated with w and v. Then the following input-
output equation is obtained.

Y, =T, X, + HU, + FW +V (13)

-1156-


okada


+ [ Yt
r Pm| \

K

|

Figure 3: Closed loop system using the model

where we define

[ ypll]  wpl2) 0yl
2 3 N+1
Yp = yp.[ ] yp:{ ] yp[ . ] (14)
L yplil Y+ 1 YpIN +3 -1
Xp:=[ zpl) z,02) z,(N] | (15)
- C,
C,A
L= | . (16)
| Gt
[ D, 0 ]
C,B D
Hy:= p: P P (17)
L CPA{J'_zBP DP J
o 0
C, 0
Fi= . . (18)
| C,,A{,“’ C,,A;;“"‘ w0

and Up, W and V are defined by up, w and v respectively
in the same way as Y,. The equation (13) can be split
into the deterministic part [ - ]? effected by r and the
stochastic part [ - ]* influenced by the noises w and v as
follows.

Yo=Yl +Y, (19)
Y =T, X5 + H,U; (20)
Y} =TpX;+ HUy + FW +V (21)

In the same way, the following model input-output equa-
tion is obtained from the closed loop system shown in

Fig.3.
le = lexml + Hml Um] (22)

Here, we consider the projection of Y, into the row space
of [XT, UT,]T. By the projection of (19), we obtain

Y, = TX¢+ HU: + Yy (23)
M=t1/] 3] (24)

Since w and v are uncorrelated with r, we have

lim l

N—oo N Yp

=0 (25)
Therefore, we can rewrite (23) as follows.

Y, =X+ H,0¢ (26)
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The noise attenuation is achieved in closed-loop identifi-
cation, which is the effect of using instrumental variable.
Now, (26) can be decomposed into the following X,

and (7,‘,’ components.
ffr’/a;,x,,,1 = rp)?;,'/a:x,,, = LXm ((L) (27)
PP/ x, O = TpXg/xUp + HpUp
= MU! (M) (28)

Then if P, has same order as P has, we can consider
L as the extended observability matrix of the system P
with the state Ta:;' such that

- t
=Y d
Ti= Xm (xp /a:X,,,l) (29)
Let the coefficicnt matrices of the system P be
(Ay, By, Cp, Dy) = (T714,T,T7' By, Cp, D) (30)

then ,X,, and 5,, can be computed from the following set
of equation.

Lt - 1)Ap = L(e+1: 85,5) (31)
i

G,y A= S Lk = 1) +1: k) (32)
k=1 k=1

On the other hand, since multiplication of (28) from the
left by L yields

L*M =L"H, (33)

§,, and f),, can be calculated from this equation. The
algorithm of the proposed method is shown in Appendix
A.

3.2 The merit of the proposed method

In the conventional 4SID[9], we split the input-output
equation (13) into the future part [ - |/ and past part
[ - ]P as follows.

YP T H 0 ur
pl=1| _"; p L/ 4
[Ypf} [rAﬁ]X”+[H2 Hl][UJ](s)
F 0 we ve ’
(&Rl v] e
And project Ypf into the row space of [U},’T U}{T Y}’T]T.

By this projection, the prediction f’p/ of Y/ is given as
follows.

P! = L7 + MyUZ + MU} (36)
(i,,ﬁl,m) =arg_ min_ "Ypf - ?pf" (37)
LI|M1|M'I

Then if w and v are uncorrelated with u, and if both w
and v are Gaussian distributed white noises,

~

lim L=T (38)

N—oo
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is satisfied and ?pf converges to the deterministic part
of Yp’ . However when w or v is correlated with u, or v
or w is not white noise, both YP’ and Y} are correlated
with V? or W?. Therefore (38) is not satisfied and ¥/
does not converge to the deterministic part of Ypf . Be-
cause in closed-loop identification, the noises have corre-
lation with u, and are not white, the accurate model is
not obtained by the conventional 4SID in the closed-loop
identification.

On the other hand, in the proposed method, the noise
attenuation is achieved in spite of the closed-loop identi-
fication because of the folloing two reasones. One is that
) is uncorrelated with v and w, the other is that we
use T, and u,,; as the instrumental variable.

3.3 Optimality of the proposed method
In this section, we use the following function.

[Assumption 4] The model Py, is sufficiently close to
the real plant P.

As mentioned above, the prediction ¥, of ¥, in (26) con-
verges to the deterministic part of Y, and the criterion
function in (A.1) is equal to the minimization of

1% - % = I (39)

Because (39) is a quadratic norm, if r is the Gaussian
distributed white signal, we can regard the cost func-
tion of the proposed method as the following H; norm
criterion,

Ppna = argn},in |18(P, K;) — &(Pm, Ki)ll, (40)
which is the effect of using the nominal model data and

attenuating the noise from not only the output data Y,
but also the input data U,,.

3.4 Introduction of the weighting func-
tion

In the PEM identification, when we use the weighting
function Wpgpy which satisfies

WpemP = PWpgy (41)

we get ¥, and u,, such that
yw = Weemyp (= Wpem Puy) (42)
uy = WpEmu, (43)

and adopt them to PEM. By using y,, and u,, we can
obtain P2 such that

Py = argmin [|[Wpgpm (P ~ Fu)ll (44)
In the same way, in the proposed method, we can intro-

duce the weighting function Wpg, Wpp and Wpgsuch
that

Wer®(P, K;) = ®(P,K:)W pg (45)
WPR(I'*' K.‘P)-l = (I+ I(.'P)_IWPR (46)

— - Wn = Pm -

K |-

Figure 4: Weighted closed loop system using a model

v = Upw
Weg [~
w
Yow
+ +
r P ot Werg =
- +

A

K

Figure 5: Weighted closed loop system

By using Zm1w, tmiw obtained from the closed-loop sim-
ulation shown in Fig.4, ypw and up, obtained from Fig.5
we can identify the model P,,2 such that

Pry = argmin |Wer (®(P,K) - ®(Pm,K))ll, (47)

which is the weighted model subspace based state space
identification.

4 Joint design method

The algorithm of the joint design method is as follows

[Step 1] By using Py, we design the controller Kj
in (9).

[Step 2] In general case, W, and W. do not exist
satisfying

W, (P, K1) = &(Prma, K)W, (48)
W,(I + K P)™ = (I + K1 P)"'W, (49)

So we consider the weighting function @, such that

i, = arg min |, Je3(P, K) - Wo@(P, K)[l,  (50)

and set Wpg, Wpg and an as
Wpr = @le, Wpr=Wpr=,In (51)

approximately. And get Prm2 from (47) by using Zmiw
Umlw, Ypw a0d p, obtained from Fig.4 and Fig.5. If P
is a SISO system then

Wpenr = an = WPR =W, (52)
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0 o‘ = 10’ = ‘:o’ .
Frequency (rad/s)
Figure 9: Gain plot of P (method 2)
Q 3400 - |
- S Y —-1.525%(s + 6.66)(s — 6.64)
© Nl ol method 1 X ~2.9652(s + 4.78)(s — 4.77) (53)
8 3200 ..\\\\, ................. , ........... ] 1,28(3 + 6.66)(8 _ 6.64)(3 + 478)(3 _ 4‘77)
'S N method 2 Den(s) = s(s + 1.62)(s + 6.86)(s — 6.75)
3000 o :‘35.1:.7:.7::?:::::,--; _______ 3 x(s+4.97)(s — 4.87) (54)
1 2 3 4 5 However, P,,; has model uncertainty. And we set the
Iteration number noises v and w, sampling time T, j and N as follows :
Figure 7: The value of J, v, w : white noise (55)
T =0.005, j =30, N = 8000 (56)
[Step 8] Replace Pm1 to Pna and go to [Step 1] iter-  Furthermore W, and W, in (4) is as follows.
atively.
Wa O 0
We=}) 0 Wgp 0 (57)
5 Numerical example 0 0 Wa
1000(s + 20)(s + 60)
W,l = (58)
In this example, we show the effectiveness of the weighted (s +0.1)(s +0.01)
identification. Consider the parallel inverted pendulums W = 1200(s + 10)(s + 50) (59)
system shown in Fig.6 The input of this system is the 27 "(s+0.1)(s +0.01)
torque of the motor, and outputs are the rotation angles 1300(s + 80) )
of the pendulum 1, 2 and the arm. This system has one Wes = T s41 (60)
input and three outputs. By considering the equation of 2(s + 40)
motion, the transfer function is given as follows. _ W, = s + 300 (61)
Pp1 = 1 For the comparison of the weighted and unweighted iden-
Den(s) tification, we make use of the following two methods.

[Method 1] Joint design of weighted model subspace
based state space identification and control. -

[Method 2] Iterative design of unweighted model sub-
" space based state space identification and control.

Fig.7 shows the value of J. in (4) on five iterations. The
minimum of J, is equal to 2984 and solid line of Fig.7.
Fig.8 and Fig.9 shows the gain plot of the second model
P,.; identified by method 1 and method 2 respectively.
Because W, is a low-pass weighting function, the ob-

Gain (dB)

e f‘: v v d/ ¢ o tained model is accurate in the lower frequency domain
requency (ra s) by method 1. From this result, we can show the effective-
, . ness of the weighted model subspace based state space
Figure 8: Gain plot of P,;3 (method 1) identification.
Vol. 3.
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6 Conclusions

In this paper, we have proposed a ne. state-space sys-
tem identification method. The merits {this method are
that the noise attenuation has been ac ieved dispite the
closed-loop identification, and that th cost function of
this method can be regarded as the H. :ontrol spec. We
have achieved these merits by using t: : nominal model
data as the instrumental variable an. attenuating the
noise from not only the output signa! but also the in-
put signal in the closed-loop identification. Furthermare,
by using this method, we have proposed a joint design
method of identification and control, and have shown the
effectiveness of our method by numerical example.
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Appendix

A. The algorithm of model sub-
space based state space iden-

tification
[Step 1]  Determine the Ay ~ Ay from
I Yy Ay Dda || Xma
S| EAN e e
(A1)

then, since v and w are uncorrelation with r, if the nom-
inal model P,,; and P are sufficiently close,

(B3 Xn + ByUn) = U2 (A2)

lim
N—oo

is satisfied.

[Step 2] Compute L and M from
L:=A1 - 07 Ay (A.3)
M := AyA]! (A.4)
{Step 3] From (31) and (32), .Zp and C, are deter-
mined as follows.
2,, = LT(1 ce - 1)Le+1:65,) (A.5)
o i 1
C,= Z L(e(k 1)+ L 0k, l}: Aﬁ“} (A.6)
k=1 k=1
[Step 4] From (33), we obtain
I 0 D
=0 ey AT
[0 L(1:m(j-1),:)HBP} (A7)
wlere
=(:1:m)
Z(,m+1:2m)
o= , T:=L'M (A.8)
=G, m(j ~1):mj)
Li:e,)T CLAeG-D+1:45,)T
Li(e+1:2¢,)T 0
0= .
L*(l(j—1>)+1:€j,:)7 0

(A.9)

~

Then, D, and B, are computed as follows

b, I 0 f
Dp | = 10
B {O[ 0 L(lzmu—l).:)” @ (A10)

P
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